Here’s some example Markdown syntax.
Headings #
The following HTML <h1>
—<h6>
elements represent six levels of section headings. <h1>
is the highest section level while <h6>
is the lowest.
H1
H2
H3
H4
H5
H6
Paragraph #
Xerum, quo qui aut unt expliquam qui dolut labo. Aque venitatiusda cum, voluptionse latur sitiae dolessi aut parist aut dollo enim qui voluptate ma dolestendit peritin re plis aut quas inctum laceat est volestemque commosa as cus endigna tectur, offic to cor sequas etum rerum idem sintibus eiur? Quianimin porecus evelectur, cum que nis nust voloribus ratem aut omnimi, sitatur? Quiatem. Nam, omnis sum am facea corem alique molestrunt et eos evelece arcillit ut aut eos eos nus, sin conecerem erum fuga. Ri oditatquam, ad quibus unda veliamenimin cusam et facea ipsamus es exerum sitate dolores editium rerore eost, temped molorro ratiae volorro te reribus dolorer sperchicium faceata tiustia prat.
Itatur? Quiatae cullecum rem ent aut odis in re eossequodi nonsequ idebis ne sapicia is sinveli squiatum, core et que aut hariosam ex eat.
Images #
Syntax #

Output #
Blockquotes #
The blockquote element represents content that is quoted from another source, optionally with citations which may be within a footer
or cite
element, and optionally with in-line changes such as annotations and abbreviations.
Blockquote without attribution #
Syntax #
> Tiam, ad mint andaepu dandae nostion secatur sequo quae.
> **Note** that you can use _Markdown syntax_ within a blockquote.
Output #
Tiam, ad mint andaepu dandae nostion secatur sequo quae. Note that you can use Markdown syntax within a blockquote.
Blockquote with attribution #
Syntax #
> Don't communicate by sharing memory, share memory by communicating.<br>
> — <cite>Rob Pike[^1]</cite>
Output #
Don’t communicate by sharing memory, share memory by communicating.
— Rob Pike[1]
Citations/Footnotes #
Syntax #
[^1]: The above quote is excerpted from Rob Pike's [talk](https://www.youtube.com/watch?v=PAAkCSZUG1c) during Gopherfest, November 18, 2015.
Output #
See bottom of page.
Tables #
Syntax #
| Italics | Bold | Code |
| --------- | -------- | ------ |
| _italics_ | **bold** | `code` |
Output #
Italics | Bold | Code |
---|---|---|
italics | bold | code |
Colors #
Syntax #
- <span font-bold font-mono text-amber>MAJOR</span>: Increment when you make incompatible API changes.
- <span font-bold font-mono text-lime>MINOR</span>: Increment when you add functionality in a backwards-compatible manner.
- <span font-bold font-mono text-blue>PATCH</span>: Increment when you make backwards-compatible bug fixes.
Output #
- MAJOR: Increment when you make incompatible API changes.
- MINOR: Increment when you add functionality in a backwards-compatible manner.
- PATCH: Increment when you make backwards-compatible bug fixes.
Math/Equation Rendering #
We use MathJax for rendering LaTeX. Here are a few examples of algorithms and equations:
Merge sort #
Syntax #
The time complexity of merge sort is $O(n \log n)$.
The recursive relation is:
$$
T(n) = \begin{cases}
1 & \text{if } n = 1 \\
2T(n/2) + n & \text{if } n > 1
\end{cases}
$$
Big-O notation: $\textcolor{cyan}{f(n)} = O(\textcolor{magenta}{g(n)})$ means $\exists \textcolor{red}{c}, n_0$ such that $\textcolor{cyan}{f(n)} \leq \textcolor{red}{c} \cdot \textcolor{magenta}{g(n)}$ for all $n \geq n_0$.
Output #
The time complexity of merge sort is .
The recursive relation is:
Big-O notation: means such that for all .
Maxwell’s Equations #
Syntax #
In table form:
| equation | description |
| ------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------- |
| $\nabla \cdot \vec{\mathbf{B}} = 0$ | divergence of $\vec{\mathbf{B}}$ is zero |
| $\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} = \vec{\mathbf{0}}$ | curl of $\vec{\mathbf{E}}$ is proportional to the rate of change of $\vec{\mathbf{B}}$ |
| $\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} = \frac{4\pi}{c}\vec{\mathbf{j}} \nabla \cdot \vec{\mathbf{E}} = 4 \pi \rho$ | _???_ |
In array form:
$$
\begin{array}{c}
\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} &
= \frac{4\pi}{c}\vec{\mathbf{j}} \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\
\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\
\nabla \cdot \vec{\mathbf{B}} & = 0
\end{array}
$$
Output #
In table form:
equation | description |
---|---|
divergence of is zero | |
curl of is proportional to the rate of change of | |
??? |
In array form:
Homomorphism #
Syntax #
A homomorphism is a map between two algebraic structures of the same type (that is of the same name), that preserves the operations of the structures. This means a map $f:A \to B$ between two sets $A$, $B$ equipped with the same structure such that, if $\cdot$ is an operation of the structure (supposed here, for simplification, to be a binary operation), then
$$
\begin{equation}
f(x\cdot y)=f(x)\cdot f(y)
\end{equation}
$$
for every pair $x$, $y$ of element of $A$. One says often that $f$ preserves the operation or is compatible with the operation.
Formally, a map $f:A \to B$ preserves an operation $\mu$ of arity $\mathsf{k}$, defined on both $A$ and $B$ if
$$
\begin{equation}
f(\mu_A(a_1,\ldots,a_k))=\mu_B(f(a_1),\ldots,f(a_k))
\end{equation}
$$
for all elements $a_1,\ldots,a_k$ in $A$.
Output #
A homomorphism is a map between two algebraic structures of the same type (that is of the same name), that preserves the operations of the structures. This means a map between two sets , equipped with the same structure such that, if is an operation of the structure (supposed here, for simplification, to be a binary operation), then
for every pair , of element of . One says often that preserves the operation or is compatible with the operation.
Formally, a map preserves an operation of arity , defined on both and if
for all elements in .
Code Blocks #
Syntax #
We can use 3 backticks ```
on a new line, write our code snippet, and then close with 3 backticks on another new line. To highlight language specific syntax, we can type the language name after the first 3 backticks (e.g. html
, javascript
, css
, markdown
, typescript
, txt
, bash
, python
, etc).
```html
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8" />
<title>Example HTML5 Document</title>
</head>
<body>
<p>Test</p>
</body>
</html>
```
Output #
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8" />
<title>Example HTML5 Document</title>
</head>
<body>
<p>Test</p>
</body>
</html>
More Code Renders #
Syntax #
Note
Only some transformers have been configured, see https://shiki.style/packages/transformers for more!
Output #
// transformerNotationDiff
console.log('hewwo')
console.log('hello')
console.log('goodbye')
# transformerNotationHighlight
from sklearn.linear_model import LinearRegression
model = LinearRegression().fit([[1], [2], [3]], [2, 4, 6])
print(model.predict([[4]])) # Output: [8]
# transformerNotationWordHighlight
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_iris
X, y = load_iris(return_X_y=True)
print(RandomForestClassifier().fit(X, y).score(X, y)) # ~0.97
# transformerNotationFocus
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_iris
X, y = load_iris(return_X_y=True)
print(RandomForestClassifier().fit(X, y).score(X, y)) # ~0.97
// transformerNotationErrorLevel
console.log('No errors or warnings')
console.error('Error')
console.warn('Warning')
// transformerMetaHighlight
console.log('2')
console.log('3')
console.log('4')
console.log('5')
// transformerMetaWordHighlight
const msg = 'Hello World'
console.log(msg)
console.log(msg) // prints Hello World
List Types #
Ordered List #
Syntax #
1. First item
2. Second item
3. Third item
Output #
- First item
- Second item
- Third item
Unordered List #
Syntax #
- List item
- Another item
- And another item
Output #
- List item
- Another item
- And another item
Nested list #
Syntax #
- Fruit
- Apple
- Orange
- Banana
- Dairy
- Milk
- Cheese
Output #
- Fruit
- Apple
- Orange
- Banana
- Dairy
- Milk
- Cheese
Other Elements — abbr, sub, sup, kbd, mark #
Syntax #
<abbr title="Graphics Interchange Format">GIF</abbr> is a bitmap image format.
H<sub>2</sub>O
X<sup>n</sup> + Y<sup>n</sup> = Z<sup>n</sup>
Press <kbd>CTRL</kbd> + <kbd>ALT</kbd> + <kbd>Delete</kbd> to end the session.
Most <mark>salamanders</mark> are nocturnal, and hunt for insects, worms, and other small creatures.
Output #
GIF is a bitmap image format.
H2O
Xn + Yn = Zn
Press CTRL + ALT + Delete to end the session.
Most salamanders are nocturnal, and hunt for insects, worms, and other small creatures.